Learning models of object structure

نویسندگان

  • Joseph Schlecht
  • Kobus Barnard
چکیده

We present an approach for learning stochastic geometric models of object categories from single view images. We focus here on models expressible as a spatially contiguous assemblage of blocks. Model topologies are learned across groups of images, and one or more such topologies is linked to an object category (e.g. chairs). Fitting learned topologies to an image can be used to identify the object class, as well as detail its geometry. The latter goes beyond labeling objects, as it provides the geometric structure of particular instances. We learn the models using joint statistical inference over category parameters, camera parameters, and instance parameters. These produce an image likelihood through a statistical imaging model. We use trans-dimensional sampling to explore topology hypotheses, and alternate between Metropolis-Hastings and stochastic dynamics to explore instance parameters. Experiments on images of furniture objects such as tables and chairs suggest that this is an effective approach for learning models that encode simple representations of category geometry and the statistics thereof, and support inferring both category and geometry on held out single view images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of Code switching on the Acquisition of Object Relative Clauses by Iranian EFL Learners

This study attempted to investigate the impact of teacher’s code-switching on the acquisition of a problematic grammatical structure, namely, object relative clauses, by intermediate EFL learners. Moreover, a secondary objective of the study was to determine the EFL learners’ attitudes and opinions regarding the effectiveness of teacher’s code-switching in their learning of a specific aspect of...

متن کامل

A Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies

In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...

متن کامل

A Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies

In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...

متن کامل

Space as a Semiotic Object: A Three-Dimensional Model of Vertical Structure of Space in Calvino’s Invisible Cities

Following the “spatial turn” of the last 3 decades in humanities and social sciences and the structure of semiotic object, this research studies space as the main semiotic object of Calvino’s (1972) Invisible Cities. Significance of this application resides in examining the possibility of providing a more concrete methodology based on the integration of Zoran’s (1984) 3 vertical levels of const...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009